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The local dispersion insert is a novel focusing element for accelerators which produces local dispersion
and 3 waves while leaving all other beam parameters unchanged. The obtained local dispersion wave
can be effectively used to control the transition energy, the so-called ¥ r jump of an accelerator, and the
beam randomization (mixing) in accelerators with stochastic cooling. Since the induced tune shift is
zero, the local dispersion insert is an extremely efficient cell, typically requiring only a small number of
magnets. The local dispersion wave can be of either sign; therefore, one can obtain both positive and
negative Ay, whereas in the conventional schemes it is always positive. The paper contains three appli-
cations of the local dispersion insert: the transition jump in the Main Injector at Fermi National Ac-
celerator Laboratory and in the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and
an asymmetric lattice for the Antiproton Debuncher at Fermi National Accelerator Laboratory.

PACS number(s): 29.20.Lq, 41.85.Lc, 42.15.Eq

I. INTRODUCTION

The local dispersion insert described in this paper is a
novel focusing element for synchrotrons which produces
local dispersion and 3 waves while leaving all other beam
parameters unchanged. This focusing element can
effectively be used in order to alter an accelerator’s lattice
for a variety of purposes, in particular:

(1) Adjusting the transition energy of an accelerator, in
particular during the transition crossing [1];

(2) Varying the frequency-momentum parameter 7) be-
tween its minimal value optimal for the rf acceleration of
the beam and the maximal value optimal for the stochas-
tic cooling [2];

(3) Designing (or modifying existing) accelerators in
such a way as to minimize the “bad” mixing and maxim-
ize the “good” mixing and, thus, improve the efficiency of
the stochastic cooling of the beam. 7 can also be time
varied as in (2). In other words, these two methods can
be combined.

Section II contains a short review of the relevant
theory. Section III describes the local dispersion insert.
Sections IV, V, and VI contain three applications of the
local dispersion insert, which illustrate the above points:
the transition energy adjustments for the transition cross-
ing in the Main Injector at Fermi National Accelerator
Laboratory (Sec. IV) and in the Relativistic Heavy Ion
Collider (RHIC) at Brookhaven National Laboratory
(Sec. V), and a new asymmetric (with =0 and >0 re-
gions) lattice for the Antiproton Debuncher at Fermi Na-
tional Accelerator Laboratory (Sec. VI). The conclusions
are summarized in Sec. VII.

II. THE THEORY

The time of travel of a particle of momentum p,+Ap
between two points s; and s, in an accelerator is
To(81,8,)+A7(sy,s,), where

1063-651X/95/51(3)/2465(7)/$06.00 51

AT
Mz—n(sl,sz)ég ) (1)
To(S1,52) Po

where 74(s;,5,) is the time of flight of a particle with
momentum p, between the points s; and s,. The
momentum slip factor 1(s;,s,) depends on the dispersion
function D, (s), the local radius of curvature p(s) of the
beam trajectory, and the Lorentz parameter y of the
beam

1 s, D (s) s*—l—
lesz 1 p(S) 7/2

n(sl,sz):: ’ (2)

where lesz is the arc length between the points s, and s,.
For the entire ring, 77 becomes the closed loop integral

1 ¢ D.(s) 1
¢ ¢c pls) ds vy ®)
The integral term is usually denoted 1/¢% where ¥, (the
transition ) has the meaning of the beam energy at
which 7 changes sign.

Equation (1) has important consequences that make 7
one of the most crucial parameters in an accelerator: the
rf bucket area turns out to be proportional to |1| ~1/2, the
synchrotron frequency to |17|1/ 2, and the randomization
(“mixing”) of the beam between the points s; and s, is
proportional to 7(s;,s,).

The local dispersion insert, described in Sec. III, pro-
duces the dispersion wave AD, (s), which is nonzero in-
side a given interval (s,s,) and zero everywhere else and
thus gives rise to An(s;,s,) while 7(s,,s;) remains un-
changed. It is worth noting that A%n(s,,s,) can be of ei-
ther sign. Various scenarios are possible depending on
what one wants to achieve—a transition jump, a zero
mixing region, a mixing enhancement, or both in different
regions of an accelerator.

Usually (for example, in the CERN Proton Synchro-
tron and Fermilab Booster) the 7 change has been
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achieved by creating a large global distortion of the
dispersion function. This may lead to new problems, the
most serious being a large increase of the maximal disper-
sion and, with it, dynamic aperture limitations and beam
loss. A local change of the dispersion function has been
proposed in Ref. [3]. Although it works in principle, the
conditions imposed on the accelerator (at least + betatron
wavelength available space in zero dispersion straight
sections and the phase advance per cell only 7/2) are so
restrictive that it cannot be used in any of the existing ac-
celerators. In addition, only one half of the magnets
needed actually change y 7, the other half being necessary
only to compensate the tune shifts caused by the “active”
ones. In that sense, the efficiency of this scheme is only
50%.

By contrast, the local dispersion insert consists of
lenses that are positioned 7 apart in betatron phase ad-
vance. Therefore, it can be used in essentially all modern
accelerators, which are in the rule based on the lattices
with either 7 /2 or /3 phase advance per cell. In partic-
ular, since the desired y ; jump can be achieved by locally
decreasing the dispersion, the maximal dispersion of the
accelerator remains unchanged. Therefore, the problems
mentioned above are absent. Although the maximal S8
function is higher than in the global dispersion wave
method, the beam size can, in fact, be decreased due to
the decrease of the dispersion.

All the magnets of the local dispersion insert are ac-
tive, thus, the efficiency of the cell is 100% and a smaller
number of magnets is needed. For example, in
Fermilab’s Main Injector, y r can be changed by one unit
with as little as two triplets of quadrupoles, while in the
RHIC at Brookhaven National Laboratory, six triplets of
quadrupoles are sufficient to change y r by one unit. In
the Antiproton Debuncher, 1 can be changed in an asym-
metric way, thus creating a lattice with zero bad mixing
and enhanced good mixing.

III. LOCAL DISPERSION INSERT

The local dispersion insert and the corresponding lat-
tice functions distortions are shown in Fig. 1. It consists
of three lenses with the focusing strength ratio —2:1:1, 7
apart in the betatron phase. The net effect of the cell is
the localized dispersion wave between the like sign lenses.
There is also a localized B wave inside the cell, however,
the local dispersion insert does not change the tunes of
the machine.

The optical equations of the local dispersion insert can
be obtained as follows. A small perturbation of the gra-
dient of a quadrupole causes a horizontal and a vertical
tune shift, a distortion of the horizontal and vertical 3
functions (8 wave), and a distortion of the dispersion
function (dispersion wave). In planar machines, there is
only the horizontal dispersion wave. A local dispersion-
adjusting cell must have zero tune shifts and no free 8
and dispersion wave escaping it.

The horizontal and vertical tune shifts caused by the
small quadrupole perturbation AB’(s) are
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FIG. 1. The local dispersion insert and the corresponding
dispersion and 3 waves.
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and similar (of course, with the opposite sign) for Av,.
For a thin quadrupole located at s,

AB’'(s)
By MR85,
which gives
Akﬁx(SO) AkBy(SO)
Avx—— 4 , and Avy— T .

The perturbations of the B functions (8 waves) down-
stream from the (thin) quadrupole are

SB0) kB, (sosin 2 (51—
Bx(s) - ﬁx So Sll‘l{ [/.LX(S) #x(so)]}
and
AB,(s) .
=AkB,(so)sin{2[p,(s)—p,(s9)]} .
B,(s)

The perturbation of the normalized dispersion function
(dispersion wave) downstream from the quadrupole is

AD) AKD, (50 Boogsinie, ()=, (50)]
—=— (s L (so)sinfp, (s)—p, (so)] .
\/BX(S) 0 0 K Hx\So

Notice that the 8 wave propagates with twice the fre-
quency of the dispersion wave. No free dispersion wave
will escape from a pair of quadrupoles of identical
strength (2n +1)7 apart in phase, however, such an ar-
rangement will produce 8 waves. Similarly, no free 8
wave will escape from a pair of quadrupoles of equal and
opposite strengths n7 apart. Finally, no dispersion wave
is created by a quadrupole in a zero dispersion region.
By combining these three statements, we arrive at the lo-
cal dispersion insert: Two quadrupoles of equal strength
7 apart in phase accompanied by another one with the
double and opposite strength, 7 (or n if necessary) apart
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and in a zero dispersion region. It is obvious from the
above equations that the tune shifts are zero, the B wave
is localized in the interior of the cell, and the dispersion
wave is nonzero only between the like sign quadrupoles.

IV. LOCAL DISPERSION INSERT
IN THE MAIN INJECTOR

The y ; jump, which secures a speedy transition cross-
ing, is probably the most widely known example of the
need to change the value of 77. The transition occurs at
the energy ¥ =y r and is characterized by a multitude of

problems [1]. Rapid crossing of transition alleviates (or
eliminates) these problems. In order to achieve the y
jump, the dispersion function must be temporarily
changed such that 7 is chiefly determined by 7 rather
than y.

It has been widely acknowledged for several years now
[4] that the transition crossing in the Main Injector is the
main problem for this accelerator. The local dispersion
insert is the solution of the problem.

The phase advance per cell in the Main Injector is 7 /2.
The lattice functions of one half of the machine are
shown in Fig. 2. See Ref. [5] for the various ¥ jump
schemes proposed so far.

The natural positions for the local dispersion insert are
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TABLE 1. Relevant lattice parameters.

Ayr Max. B, (m) Max. B, (m) Max. Dispersion (m) Av, Av,
0 59.1 62.7 1.95
0.5 77.3 64.5 1.98 <1073 <1073

on each side of the two long arcs ending with zero disper-
sion regions. As an example, let us put two inserts to the
left and right of the long straight section, at the quadru-
poles marked by 1, 2, and 3, which are 7 apart (Fig. 2).
The horizontal 8 function has maxima of the same size at
these quadrupoles. In addition, the dispersion function is
zero at the position of the quadrupole 1. Consequently,
adding Ak to the quadrupoles 2 and 3 and —2Ak to the
quadrupole 1 will create a dispersion bump between the
quadrupoles 2 and 3, and a B wave between the quadru-
poles 1 and 3. There will be no changes in the remaining
part of the ring.

Figure 3 illustrates the effect of the local dispersion in-
sert well: The dispersion is increased in the inserts, while
it is unchanged in the rest of the machine. As predicted,
Av,~Av,=~0. Since Ay ;>0 is achieved by locally de-
creasing the dispersion, the maximal dispersion does not
change.

Several relevant lattice parameters are shown in Table
I for Ay 7 of 0.5, achieved with the fractional gradient in-
creases of approximately 12%.

In practice we need Ay =1, which can be achieved by
adding one local dispersion insert on the other end of
each of the two arcs. Due to the locality of the local
dispersion insert, the values in Table I do not change ex-
cept that Ay ; is doubled.

V. LOCAL DISPERSION INSERT
IN THE RELATIVISTIC HEAVY ION COLLIDER

The lattice functions in one superperiod (one third) of
the RHIC at Brookhaven National Laboratory are shown
in Fig. 4. For a previous transition jump scheme, see
Ref. [6]. The local dispersion insert works very well
despite the fact that the phase advance per cell is only
80°, which has the consequence that the 5 and dispersion
waves do not exactly cancel outside of it.

It is straightforward to install two local dispersion in-
serts in the first sextant. Figure 5 shows their effect for
Ak of about 10% of the regular quadrupole strength: The
dispersion is decreased in the inserts and only minimally
affected in the rest of the machine. For example, the
maximal dispersion increases by 24 cm to 2.08 m. The
relevant beam parameters are shown in Table II.

VI. AN ASYMMETRIC LATTICE
FOR THE ANTIPROTON DEBUNCHER

In machines with stochastic cooling [2], 7 is, as a rule,
a compromise aimed at satisfying several different cri-
teria. The radio-frequency operations (the beam capture,
acceleration, rotation, etc.) require 1 to be minimized,
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while the stochastic cooling requires 7 to be maximized
such that the mixing factor [2]

M= Pofo¢(P )lnfmax /fmin
2qWN

4

is minimized. Here p, is the particle momentum, f its re-
volution frequency, W=/ .. — fmn the amplifier band-
width, and N the number of particles in the beam. In ad-
dition, it is desirable to have a large value of 7 between
the kicker and the pickup (good mixing) and =0 be-
tween the pickup and the kicker (no bad mixing).

With the local dispersion insert it is possible to change
7 both locally and in time and thus realize an accelerator
in which all of the above requirements are satisfied. Such
a machine will have 7(PU,K)=0 at all times, while
n(K,PU) will be varied during the operation between its
minimal (for the radio-frequency acceleration of the
beam) and the maximal (for the stochastic cooling) value.
Machines with different values of 7 in different segments
were discussed in the literature (see, e.g., Ref. [2]), howev-
er, the method presented here is the first one that (i) can
be applied in an existing machine (as opposed to design-
ing an asymmetric lattice from the start) and (ii) can be
used during the operation of the accelerator in order to
continuously optimize various regimes of the machine cy-

cle. As an example, I present the design for the Fermilab
Antiproton Debuncher, where by modifying a total of 18
quadrupoles the bad mixing is completely eliminated,
while the good mixing can be varied between zero and
twice or more its present value.

The superperiodicity of the machine is three, each su-
perperiod consisting of two mirror-image halves. The
phase advance per cell is 7/3. The lattice functions of
one sextant of the present machine are shown in Fig. 6.
In order to achieve n(PU,K)=0 we need a negative local
dispersion wave in the two sextants between the pickup
and the kicker. The strength of the local dispersion in-
sert needed is (+ 0.16, +0.16, —0.32) in units of the reg-
ular quadrupole strength. In the remaining four sextants
between the kicker and the pickup we need a positive lo-
cal dispersion wave. The strength of the local dispersion
insert needed in order to double the good mixing from its
present value is (—0.30,—0.30, +0.60) in the same
units. The complete Debuncher lattice with 7 twice the
present value and %(PU,K)=0 is shown in Fig. 7. This
lattice is studied in detail in another publication [7]. We
only note here that the stochastic cooling rate is roughly
proportional to 7 and, therefore, also doubled. The max-
imal value of the (horizontal) B function increases with 7,
but quite substantial increases can be tolerated. For the
lattice of Fig. 7 the beam size is still only one half of the
initial beam size determined by the momentum spread
and the maximal dispersion. Thus, there is no apparent
reason for not aiming for even higher values of 7.

TABLE II. Relevant beam parameters.

Ayr Max. B, (m) Max. B, (m) Max. Dispersion (m) Av, Av,
0 144 143.7 1.84
0.5 166.5 145.5 2.08 <1073 <1073
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VII. CONCLUSIONS

The local dispersion insert is a simple and efficient tool
for the local adjustment of the dispersion function and,
thus, the transition energy and the mixing in an accelera-
tor. It is the only such cell proposed so far that can actu-
ally be used in real (existing or under construction) ac-
celerators. In order for it to be used in an accelerator,
the latter must have the phase advance per cell 7/(in-
teger) and at least one point of zero dispersion. Since the

h ‘*”"MONW"“‘V ‘H‘H}AN‘\W’

modern accelerator lattices are invariably based on either
w/2 or w/3 phase advance per cell and have (because of
that) zero-dispersion straight sections, the conditions for
the application of the local dispersion insert are automat-
ically fulfilled. How this works has been shown here on
the example of three accelerators: the Main Injector and
Antiproton Debuncher at Fermilab, and the Relativistic
Heavy Ion Collider at Brookhaven National Laboratory.
It is worth pointing out that the local dispersion insert
does not cause any undesirable side effects in addition to

FIG. 7. The complete De-
buncher lattice with zero bad
mixing and 7 twice the value of
the nominal lattice.
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its intended effect, the change of the transition energy or
the amount of mixing: It changes the dispersion locally,
while leaving the global properties of the machine
unaffected. In particular, the tunes of the machine and
the maximal value of the dispersion remain unchanged.
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